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Applying linear perturbation theory to the general-relativistic field equations, in 
a series of recent papers we have analyzed the gauge problem for an almost- 
Robertson-Walker universe. Mathematically, our analysis made use of a rather 
arbitrary choice of the background space-time geometry, and it turns out to possess 
the undesirable feature that the basic definitions and concepts are valid only for 
Einstein's gravity theory. The main purpose of this paper is to remedy all of the 
above deficiencies. Consequently, a new geometrical discussion of the notion of 
a gauge-invariant variable is presented with a view to demonstrating its usefulness 
in the context of an arbitrary diffeomorphism-invariant covariant field theory. 
Another welcome feature of this discussion is that, for linear perturbation theory, 
the proposed construction of gauge-invariant variables does not depend on the 
specific symmetry properties of the background "space-time" geometry chosen; 
in other words, it can be proven to hold for any possible choice of the background. 
In a companion paper, such an approach to the gauge problem will enable us to 
indicate in universal terms what geometrical objects are in fact essential if one 
is to obtain a fully satisfactory description of the equivalence classes of 
perturbations. A new example of the general structures, as compared with those 
already investigated for Einstein's gravity theory in the description of an almost- 
Robertson-Walker universe, is also given there. This example arises from 
consideration of the infinitesimal perturbation of the metric tensor itself (pure 
gravity) defined on a fixed background de Sitter space-time. 

1. INTRODUCTION 

Beginning from Einstein's theory of gravity, in a series of recent papers 
(Banach and Piekarski, 1996a--d) we have shown how to treat, in a fully 
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covariant and gauge-invariant manner, the evolution of linear perturbations 
in homogeneous and isotropic cosmological models. To be more precise, we 
have developed there a systematic approach toward the problem of describing 
the equivalence classes of perturbations in a Robertson-Walker universe 
dominated by a general perfect fluid (Banach and Piekarski, 1996a-c) or 
consisting of massive collisionless particles (cold dark matter) (Banach and 
Piekarski, 1996d). Among other things, emphasis was placed on demonstrat- 
ing that, for the aforementioned matter descriptions, a simple and unique 
characterization of cosmological perturbations can be obtained if one defines 
in a suitable way 17 or 18 "geometrically" independent, not identically 
vanishing gauge-invariant variables. These basic variables are important 
because they enable one to divide the infinitesimal perturbations into physi- 
cally relevant equivalence classes: two infinitesimal perturbations ~sb and 
82sb are said to be equivalent if there is a vector field v on the space-time 
manifold X such that 82sb differs from ~sb by the action of the Lie derivative 
~v on the background solution sb to nonlinear field equations. Another wel- 
come feature of these variables is that any gauge-invariant quantity can be 
constructed directly from the basic variables through local (i.e., purely alge- 
braic and differential) operations. 

Given linear perturbation theory for Einstein's field equations, a system- 
atic geometrical explanation of the notion of a gauge-invariant variable can 
be found in the paper by Banach and Piekarski (1996a). Although some 
important issues concerning the gauge problem were thereby resolved, the 
analysis of this paper nevertheless was not general in the following two 
senses: First, a proposal was made for defining the linearized perturbations 
as the equivalence classes of tangents to one-parameter families of exact 
solutions to the diffeomorphism-invariant, nonlinear field equations (Ehlers, 
1973; Wald, 1984). However, this proposal relied heavily upon a particular 
diffeomorphism-invariant theory, namely Einstein's general theory of relativ- 
ity. Second, since a definition of the notion of a gauge-invariant variable was 
given only for perturbations in Robertson-Walker universe models (Ryan 
and Shepley, 1975), it was not recognized that a completely general discussion 
(i.e., a construction of infinitely many gauge-invariant variables essentially 
independent of any concrete symmetry properties of the background space- 
time geometry chosen) almost always can be made. Consequently, several 
steps in the arguments were presented in an unnecessarily specific manner. 

This is the first in a pair of papers (Banach and Piekarski, 1997), the 
overall objective of which is to remedy all of the above deficiencies. In 
particular, the basic object here is to gain more information concerning the 
systematic geometrical formulation of linear perturbation theory for the gen- 
eral case of covariant (diffeomorphism-invariant) field equations, rather than 
proceeding with those detailed calculations within any specific theory that 
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are not universally valid or directly related to the general structure of a theory. 
As a consequence of this program, our construction of the gauge-invariant 
variable of order r will be proven to hold in an arbitrary diffeomorphism- 
invariant, covariant theory and for any possible choice of the background 
geometry. Interpreted from a slightly different point of view, this new con- 
struction thus gives a completely general proof, applicable to an arbitrary 
system of covariant field equations, of a result of Banach and Piekarski 
(1996a) for the case of general relativity. In a companion paper (Banach and 
Piekarski, 1997), such an approach to the gauge problem will enable us to 
indicate in universal terms what geometrical concepts, notions, and ideas are 
in fact essential if one is to obtain a fully satisfactory description of the 
equivalence classes of perturbations. Moreover, a new example of the general 
structures, as compared with those already presented (Banach and Piekarski, 
1996a--d), is also given there. This example arises from consideration of the 
infinitesimal perturbation of the metric tensor itself (pure gravity) defined 
on a fixed background de Sitter space-time (Hawking and Ellis, 1973, p. 124). 

The gauge problem for covariant field equations can be studied using 
the formalism of jet spaces (Vinogradov, 1984). Such a formalism is very 
general, enough so to obtain a natural geometrical definition of an arbitrary 
system of partial differential equations. Also, certain questions concerning 
the local symmetries on field configuration space of these equations are best 
illustrated by introducing the language of jet spaces. However, we shall be 
concerned here only with diffeomorphism-invariant (covariant) theories, i.e., 
the nonlinear field equations will be assumed to have a tensorial form in the 
precise sense explained in Section 2. Under these circumstances, as noted 
already by Lee and Wald (1990) and Iyer and Wald (1994), there is no loss 
of generality in employing a covariant derivative operator V relative to an 
arbitrary, fixed, linear connection on the frame bundle of the manifold X of 
independent variables. 3 Our construction of gauge-invariant variables will 
make use of our choice of derivative operator on X. However, we will 
point out explicitly when the objects we define are independent of any such 
additional structure we have introduced. With the help of V, we then get rid 
of the jet spaces mentioned above by replacing them by a suitable hierarchy 
of tensor and vector bundles (Choquet-Bruhat et  al., 1989); the discussion 
can be made simpler thereby, yet without loss of generality of the conclusion. 
Next, we use this hierarchy of tensor and vector bundles in order to give an 
optimum geometrical explanation of the notion of a gauge-invariant variable. 
Nevertheless, it is perhaps important to stress that, for application to the 
present case (covariant theories), the formalism of jet spaces and that of 

3Often the manifold X can be identified with the space-time manifold, even though this 
interpretation of X is not forced on us. 
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tensor and vector bundles are mathematically equivalent and it is possible 
to choose either one to suit the problem at hand; here we seek to study the 
concept of gauge invariance by means of the second formalism. 

The layout of this paper is as follows. Section 2 introduces a number 
of tensor and vector bundles. This will serve to establish notation for the 
subsequent sections and to provide a concise characterization of covariant 
field equations. Section 3 presents the more relevant aspects of the "naive" 
gauge-dependent version of linear perturbation theory. Section 4 first defines 
the equivalence classes of perturbations and then considers the notion of a 
gauge-invariant variable of order r. [In a companion paper (Banach and 
Piekarski, 1997), we combine the results and constructions of this section to 
specify the conditions under which the equivalence classes of perturbations 
can be described in terms of a finite set of gauge-invariant variables. Within 
the framework of Einstein's gravity theory, these rather general conditions will 
be illustrated by considering the aforementioned case of  a fixed background de 
Sitter space-time.] Section 5 gives an interpretation of how the notion of a 
gauge-invariant variable relates to the properties of the equations governing 
linearized perturbations. Section 6 is for discussion and conclusion. Finally, 
the auxiliary technical material is included as an Appendix. 

2. PRELIMINARIES 

2.1. Some Useful Tensor and Vector Bundles 

The objective here in Section 2.1 is to define a suitable hierarchy of 
tensor and vector bundles; this will, among other things, serve as a convenient 
starting point for any systematic discussion of the general structure of diffeo- 
morphism-invariant, covariant field equations (see Section 2.2). The basic 
idea is in fact quite simple. In our approach to covariant field theories, it is 
natural to introduce a finite set g of tensor fields s a (A = 1, 2 . . . . .  n) as 
fundamental objects, to take s a to be a cross section of  the appropriate tensor 
bundle S A (Choquet-Bruhat et  al., 1989; Dieudonn~, 1972), and to assume 
that g or alternatively 4 

S :=  + S A (2.1) 
A=I 

is a classical solution of the nonlinear system of covariant field equations 
[see equations (2.23) in Section 2.2]. Clearly, from this point of view, s can 

4Under the canonical injections (Oreub, 1975, pp. 5 6 ~ 0 ) ,  the set g of  tensor fields s A (A = 
1, 2 . . . . .  n) is an element of  S, the (external) direct sum of S a. Consequently, given the 
definitions (2.1) and (2.2) of  s and S, it may be convenient not to distinguish between g and 
s, but to regard them as the same geometrical object. 
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be identified with, or represented by, a cross section of the vector bundle S 
which is a direct sum of sA: 

S "= G S A (2.2) 
A=I  

We further specify S a (and hence S) as follows. Let X be an N-dimensional 
manifold; we refer to this manifold as the "space-time" manifold or, more 
precisely, the manifold of independent variables. Then, by using the same 
terminology as in Dieudonn6 (1972, p. 119), we conclude that there should 
be no essential loss of generality in assuming that S A is the tensor bundle of  
type (rA, RA) over X (r a is the "contravariant" index and R A is the "covariant" 
index); for simplicity we shall assume this is the case. Let S a be a fiber of 
S a over x e X. This fiber consists of  such tensors at x ~ X of covariant 
valence R a and contravariant valence ra that S a can be endowed with a 
structure of a vector space of N ra+Ra dimensions (dim S a = Nra+RA). After 
these preparations, we easily define S a in terms of Sa: 

S a := tO S A (2.3) 
x~X 

Given a finite set of tensor bundles S a (A = 1, 2 . . . . .  n), we can construct 
new bundles by a variety of operations. One such operation is the direct sum 
o f S  A(A = 1,2 . . . . .  n): 

S :  = + S A := tO S x (2.4) 
A = I  xeX 

This operation is accomplished by taking S to be the disjoint union of the 
vector spaces 

Sx := �9 5 a (2.5) 
A = I  

as x runs through X. It follows from equations (2.4) and (2.5) that S carries 
a natural structure of  a vector bundle. The importance of S will appear clearly 
when we come to the study of diffeomorphism-invariant (i.e., covariant) field 
equations. Here we only mention that any solution of these equations can be 
identified with the mapping s: X ---) S which is a cross section of S: 

X ~ x ~ s(x) ~ S~ (2.6) 

Such an interpretation of  s again yields [see equation (2. !)] 

s(x) = @ sA(x) (2.7) 
A=I  

where sa(x) stands for some element of  S a. 
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Taking the dual is another operation for creating new bundles from old. 
Let S A* and S~* be a pair of vector spaces dual to S A~ and S., respectively: 

For any A, put 

S~* := �9 S~ A* (2.8) 
A=I 

SA*: = U S A* (2.9) 
XEX 

so that S A* is a tensor bundle whose fiber S A* over x ~ x consists of tensors 
at x ~ x of contravariant valence RA and covariant valence rA. Then we can 
define a new vector bundle over X which is called the dual of S and is denoted 
by S*: 

S • "= + S A:~ .'~- U S~ (2.10) 
A=I xEX 

In this paper, the idea of introducing the vector bundles dual to the original 
ones lends itself to interpretation in two complementary senses: first, as a 
way to understand the general structure of the equations governing linearized 
perturbations (see Section 3), and second, as a way to discuss the concept 
of gauge invariance (see Section 4). 

From the considerations in Section 2.2 below we infer that it helps in 
analyzing the covariant field equations to consider the tensor bundles Sp a 
defined as follows. For each integer p -- 0 and any A, denote by SAa the set 
of tensors at x E X of type (r A, RA + p). To see the structure of this set in 
a better light, we can alternatively characterize SA~ by saying that if V 
represents the covariant derivative relative to any linear connection on X 
(Dieudonnr, 1972, p. 333) and VPs a := V(VP-~s A) describes the effect of  a 
multiple application of  V to s a (with s A being an arbitrary C" cross section 
of SA), then the image of x ~ X under VPs A (i.e., the value of VPs a at x e 
X) is an element of Spa-*. Now, given the above definition of Spa.,, let Sp a be 
the disjoint union of the sets Spa,~ as x runs through X; thus 

Spa := kJ sA~ (2.11) 
XeX 

For essentially obvious reasons, S~ carries a unique tensor bundle structure 
with base X and canonical projection Trip, and S A equals S A when p = 0 
(era:  = ~0). 

Next, let Spa,* be a vector space dual to sA~. This yields the dual of Spa 
as given by 

Spa* := U S A* (2.12) 
xeX 
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Using sA~ and a ,  S~,x, we can also define the following vector spaces: 

Sp~:= O Spa~ (2.13a) 
A=I 

S*a "= d) S A* (2.13b) 
A=I  

S(r).~ "= G Sp~ (2.14a) 
p = 0  

S~r)a "= @ S*~ (2.14b) 
p = 0  

In addition to S and S*, these definitions permit us to introduce four new 
vector bundles over X: 

Sp := LJ Spa = G 5'~ (2.15a) 
x E X  A=I 

S* := LJ S*x = @ S a* (2.15b) 
xEX  A=I  

S~) := LJ S~)a = @ Sp (2.16a) 
x ~ X  p=O 

S~r) "= LJ S~),~ = d) S* (2.16b) 
x ~ X  p = 0  

Here and in what follows, the choice of an integer r --> 0 in the definitions 
(2.14) and (2.16) is left arbitrary. A particularly important cross section of 
Sp is determined by 

X ~ x ~ ~) (VPSA)x E Sp.x (2.17) 
A=I  

where, as usual, the symbol (•PSA)x denotes the value of VPs A at x �9 X. Also, 
elementary inspection shows that 

X ~ x -  p=0 + [@A=, (VPSa)x] �9 S(r),~ (2.18) 

is a cross section of S(r). Consequently, the vector bundles Sp and S~ are 
very useful and appear naturally in any discussion where one considers the 
first-, second-, and higher order covariant derivatives of s. In Sections 3 and 
4, a study of further properties concerned with the linearized field equations 
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and the gauge problem will show the usefulness and naturalness of dual 
vector bundles S* and S~*~ as well. 

2.2. Diffeomorphism-Invariant (Covariant) Field Equations 

To proceed further, we must be somewhat more specific about the choice 
of an invariant type of differentiation of tensor fields. In each particular case, 
especially for metric theories of gravity (Iyer and Wald, 1994) or some unified 
field-theoretic treatments of gravitation (Slawianowski, 1994, 1995), there 
will always be a preferred linear connection on X, so that one can employ a 
covariant derivative based on this connection. Usually, such a covariant 
derivative is denoted by V. Since, however, the overall objective here is to 
formulate linear perturbation theory for the general case of diffeomorphism- 
invariant, covariant field equations, this paper will instead adopt a more 
universal attitude. Thus it will be assumed henceforth that V is the covariant 
derivative relative to an arbitrary, fixed, linear connection on X. 

Another, equally legitimate, choice which one might have made in many 
situations would be to still use a preferred linear connection on X. However, 
as follows from the discussion in Sections 3 and 5, our choice, albeit at 
first sight unnecessary, has the distinct practical advantage of considerably 
simplifying the derivation of linear perturbation equations. In this context, 
it should be noted that what fixed linear connection on X one uses is really 
unimportant: everything will make perfectly good sense provided only that 
the value of a difference between the "preferred" and fixed covariant deriva- 
tives of VPs A (p -> 0) at x ~ X can be "constructed" locally out of the 
quantities (VkSB)x, where k = 0, 1 . . . . .  p + 1 and B = 1, 2 . . . . .  n (here, 
of course, such a construction is permitted to depend explicitly on x ~ X). 
As an illustration, in discussing the Cauchy problem and/or linear perturbation 
theory for Einstein's field equations and their modifications such as, e.g., the 
Brans-Dicke and Hellings-Nordtvedt equations (Brans and Dicke, 196l; 
Hellings and Nordtvedt, 1973), it is the custom to introduce a fixed "back- 
ground" metric gb as well as the physical metric g and then to consider a 
tensor field on X which is the difference between the connection defined by 
g and the connection defined by gb. With the help of this tensor object, one 
can then prove that the original equations of metric theories of gravity can 
be expressed in terms of the covariant derivatives of various tensor fields 
with respect to gb. For further details concerning these issues, see the compre- 
hensive analysis by Iyer and Wald (1994, p. 847). 

In connection with our treatment of diffeomorphism-invariant, covariant 
field theories, another useful digression is also needed. Adopting the standard 
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convention of setting 7Ps a = s a when p = 0, for each integer p >- 0 we 
define the action of 7P on s := O~=ls A as follows: 

VPs := @ ~7Ps a ( ~  ~Ts := VIs) (2.19) 
A=I 

Further, we specify the linear operator D r by explicitly describing its effect 
on the C r cross sections x ,.--, s(x) of S: 

D"s := @ Ves (2.20) 
p=0 

Here r is an arbitrary integer (r -> 0). Then, after denoting by (VPS)x and 
(Drs)x the values of ~TPs and Drs at x E X, the mappings x ,--. (VPS)x and 
x ~ (Drs)x give an interpretation of 7Ps and Drs as cross sections of Sp and 
S(r), respectively. 

Now, with this preparation behind us, let it be supposed that the mapping 
s: X-~ S, which is a cross section of the vector bundle S, satisfies the following 
system of field equations: 

Ht(x, s, 7 s  . . . . .  ~qs) = O, I = 1, 2 . . . . .  m (2.21) 

Here, as well as in our considerations below, the value of H I at a point x 
X depends only on the values of s and its covariant derivatives 7t's up to 
order q evaluated at a point x ~ X. However, to make the resulting formulas 
shorter, in equations (2.21) the dependence of s, Vs . . . . .  7qs upon x is not 
shown explicitly: 

Hi[x, s(x), (Vs) . . . . .  , (Vqs)x] = HI(x, s, Vs  . . . . .  Vqs) (2.22) 

Clearly, on employing the definition (2.20) of  Drs, we may always write 
equations (2.21) in the abbreviated form 

Ht(x, Dqs) = O, I = 1, 2 . . . . .  m (2.23) 

From now on it will be postulated that, for each C o cross section x ,--, s(x) 

of S, the objects 1-11( ., s, 7 s  . . . . .  7qs)  and/or HI(-, Dqs) are tensor fields of 
various types on X (Dieudonn6, 1972, p. 119). This postulate can be viewed 
as expressing the invariance of the component form of field equations under 
general coordinate transformations. Consequently, we shall be concerned here 
only with diffeomorphism-invariant theories, i.e., the objects H t, I = 1, 2, 
. . . .  m, will be assumed to be diffeomorphism-covariant in the sense that 

cr * Ht( ., Dqs) = Ill[ ., Dq(cr * s)] (2.24) 

where or* is the action induced on the fields by a diffeomorphism ~r: X ~ X 
(Iyer and Wald, 1994, p. 847). From this viewpoint, equations (2.21) or (2.23) 
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may be interpreted as covariant field equations. For obvious reasons, we 
restrict our attention to situations where these equations form a determinate 
system of partial differential equations (i.e., this system is neither overdeter- 
mined nor underdetermined). 

Characterizing the properties of equations (2.21) and/or (2.23) still fur- 
ther, we also note that the statement that the objects H t, I = 1, 2 . . . . .  m,  
depend for each x �9 X only on s(x)  and the first q covariant derivatives VPs 
of s evaluated at x �9 X is completely independent of the choice of derivative 
operator on X. Because of this, it seems reasonable to refer to equations 
(2.21) or (2.23) as the covariant field equations of order q. Naturally, if we 
are primarily interested in some modifications of a classical theory of gravity, 
then the original collection of tensor fields, namely {sA; A = 1, 2 . . . . .  n}, 
consists of a (Lorentz signature) metric g (s I := g) and other tensor fields 
s a, A 4: 1, on X. However, no such identification of one of the fields with 
g is necessary in the general case, and our constructions below are valid even 
for those diffeomorphism-invariant theories in which the aforementioned 
collection of fields does not originally contain a metric g (Slawianowski, 
1994, 1995). 

Finally, to illustrate the use of the vector bundle S~q) with base X and 
canonical projection -rr(q), we now give a geometrical definition of equations 
(2.23). To this end, consider first the set l"(q) which consists of all cross 
sections of S(q). Letting ~ denote the cross section of S m and putting 

sp := @ ~ (2.25) 
A=I 

we find from 

that the mapping 

q 
S(q) := p~=O Sp (2.26) 

X ~ x ~ S(q)(X) �9 S(q), x (2 .27)  

is an element of F(q). Since the vector bundle S<q) is a manifold (i.e., a 
finite-dimensional space where some neighborhood of  each point admits a 
coordinate system), the set F(q) serves to promote the interpretation of u �9 
S(q) as a pair (x, S(q)(X)) in which x := ar(q)U and S~q) is such a cross section 
of S(q) that S(q)(X) = I~l; the choice of  S(q) �9 F(q) depends of course on the 
choice of u �9 S(q), but nevertheless is not unique. Under this interpretation, 
and after abbreviating (x, S(q)(X)) as (x, S(q~), we can uniquely define the subset 
or submanifold N of S(q) by saying that u belongs to ~ if and only if the 
corresponding pair (x, S(q)) satisfies the conditions of the form 

Ht(x,  S(q)) = O, I = 1, 2 . . . . .  m (2.28) 
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Here S(q) plays the role previously played by Dqs in equations (2.23). The 
above conditions define ~ by an "algebraic" system of equations, and it is 
possible and natural to identify the covariant field equations with ~ Writing 
F for the vector space of cross sections of S, we then see that s e F is a 
solution of equations (2.23) if and only if the set 

~s := {(x,/)Us): x E X} (2.29) 

is a subset of ~d. 
These definitions of ~ and ~ ,  are analogous to those proposed by 

Vinogradov (1984) in the context of an arbitrary system of partial differential 
equations, the vector bundles S<r) being replaced by the jet spaces Jr('rr), and 
one might ask why we should spend our time on S~r) when a formalism of 
jet spaces solves the problem completely. The answer is that the practical 
feasibility of getting a meaningful geometric definition of equations (2.23) 
depends very much on the complexity of the formalism involved. For covari- 
ant field equations, it happens that the method based on S(r) is much simpler 
than that based on Jr('rr). The same conclusion holds if we decide to discuss 
in greater detail the structural features of a linear approximation to these 
generally nonlinear field equations. 

3. L I N E A R  P E R T U R B A T I O N  E Q U A T I O N S  

3.1. Discuss ion of  the Special  Case  W h e n  H t ( / =  1, 2, . . . ,  m) Are 
Scalar Fields on  X 

In an exact description, the full nonlinear system of equations, which 
consists of equations (2.21) or (2.23), would become a complicated set of 
equations for the determination of s. Clearly, solving this system is not simple, 
but it turns out that we are often interested only in solutions s close to a 
given "background" solution sb and for those solutions another device worth 
noting is that of using perturbation theory to obtain a linearized form of 
equations (2.21) or (2.23). The basic assumptions of this theory, which seem 
necessary in order to give a clear idea of what the perturbation method is to 
be (Ehlers, 1973; Banach and Piekarski, 1994a, b), may be formulated as 
follows: Consider an open interval ~ := ( - d ,  d) of R, d > 0. Assume further 
that for each ~ ~ ~ there exists a classical solution s(e, x) to equations (2.21) 
or (2.23): 

s(~, x) = @ sa(e, X) (3.1) 
A = I  

In view of our definitions in Section 2, we may interpret equation (3.1) as 
asserting that sa(e, X) is an element of Sx a and s(~, x) is an element of Sx; this 
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interpretation holds for each x ~ X and each e e ~ The set of classical 
solutions defines a function space, and a one-parameter family of exact 
solutions given by {s(e, .); e E OR} may be thought of  as a curve in the 
function space passing through the "point" Sb := S(e, ")J~=0, which we call 
the background solution. Putting it differently, we may say that the parameter 

~ OR measures the size of  the perturbation in the sense that the fields s A 
(A = 1, 2 . . . . .  n) depend continuously on ~ and the object 

Sb(X ) := S(0, X) ~--- ~) sA(0, X) (3.2) 
A=I 

is a known solution of nonlinear field equations (Wald, 1984). Now, abbreviat- 
ing the value of sA(e, X) at e = 0 as ~(x)  [~(x) := sa(0, x)], we find from 
equation (3.2) that 

Sb(X) = G @(X) (3.3) 
A=I 

If  the fields s A (A = 1, 2 . . . . .  n) depend differentiably on e, it will also be 
possible to define the infinitesimal perturbation of ~ as follows: 

0s A (sA)' := ('-~-~)~: ~ (3.4) 

Similarly, we can define the infinitesimal perturbation of  s b" 

(3.5) 

In the Introduction, we denoted this perturbation by ~lSb o r  ~2Sb. Note that 
(sA)'(X) and s'(x), the values of  (sA) ' and s' at x e X, are the tangents to the 
curves ~(~)  = sA(e, X) and Cx(e) = s(r x) (with x fixed) in S~ a and Sx at e = 
0, so (sA)'(X) and s'(x) may naturally be viewed as vectors in the tangent 
spaces to S A and Sx at the "points" ~(x)  and Sb(X). However, due to the vector 
space structure of both Sx A and Sx, it is possible to identify the tangent space 
at ~(x)  or Sb(X) with S~ and Sx itself. Under this identification, equations 
(3.4) and (3.5) clearly show that the mappings x ~ (sA)'(X) and x ~ s'(x) 
are cross sections of S A and S, respectively. 

Here it should perhaps be stressed that one could have approached the 
problem of defining the infinitesimal perturbation s '  of  Sb in a number of 
other ways. Thus, for example, one might have sought to regard {s(r .); 

~ OR} not as a one-parameter family of exact solutions to equations (2.21), 
but rather as an arbitrary C l curve in the function space passing through the 
background solution Sb('). In this way of thinking, the infinitesimal perturba- 
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tion s '  o f  Sb defined by equation (3.5) is an arbitrary cross section of S. We 
shall repeatedly make  use of  this extended definit ion of  s '  in what  follows 
(see especial ly our discussion at the end of  Section 4.1, where we consider 
the equivalence class Is ' ]  o f  s '  e F). 

For convenience,  and before deriving the linear field equations for s ' ,  
we introduce the fol lowing useful notation for  the value of  VPs(~, ") at x ~ X: 

wP(~, x) :=  (VPs(e, "))x E Sp~,, p = 0, 1 . . . . .  ~ (3.6) 

In using this notation, it is understood that s(e, .) satisfies equations (2.21) 
and/or (2.23) if ~ belongs to ~ .  Consequently,  using the definition (3.6), we 
may  rewrite these equations as 

Hi[x, w~ x), wt(e, x) . . . . .  wq(E, x)] = 0 (3.7) 

with an integer I ranging f rom 1 to m. Under  appropriate assumptions  of  
uniformity, we have 

=0 A=I 

because  the derivat ive  opera tor  V on X does  not  d e p e n d  on r Hence the 
linear field equations for s '  are most  easily obtained by first differentiating 
H t with respect  to ~ at ~ = 0 and then exploit ing the obvious  relations 

0,,,] = = 

3k ],=0 0, I 1, 2 . . . . .  m (3.9) 

As shown below, equations (3.9) indeed are linear equations for  s ' ,  i.e., they 
can be expressed in the form 

Lopl(s  ') = 0, I = 1, 2 . . . . .  m (3.10) 

where  Lop I is a linear differential "space- t ime"  operator  acting on s ' .  I f  we 
can solve equations (3.10) for s ' ,  then Sb(X) + ~S'(X) should yield a good  
approximat ion to s(~, x) near e = 0, and issues of  practical interest thus can 
be investigated. 

In order to explicitly construct  Lop I, consider first the special case of  
equations (3.7) in which H I (I = 1, 2 . . . . .  m) are usual scalar functions of  
x, w ~ w I . . . . .  w q of  class C 1 with respect  to w r (r  = 0, 1 . . . . .  q). Since, 
then, for each possible choice of  (I, x) and w r (r 4: p) ,  the object  HI(x, w ~ 
w I . . . . .  w ~ o, w p+t . . . .  , w q) is a differentiable mapping  of  Spa into R, we 
are naturally led to define the "der ivat ive of  H t with respect to ~P ~ Spa at 
~v p = w p'' to be a linear form on Sp~, i.e., an element  of  the vector  space 
S*a dual to Sea. More  prec ise  speci f icat ions  concern ing  this derivative,  which  
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f o r  brevity w e  deno te  as dH1/dw ~ occur  in the Append ix .  Here we only 
mention that dHt /dw ~ ~ S*~ depends on w ~ w I . . . . .  w q and hence on e 

through w r = w~(e, x),  r = O, 1 . . . . .  q. It is possible to express this fact 
by writing 

d H  ~ 
dw p - ~ [ x ,  w~ x), wl(e, x) . . . . .  wq(e, x)] 

= ~ ( x ,  w ~ w I . . . . .  wq) (3.11) 

Now, using the identity wr(~, x),=0 = (V'Sb)x [of interest if only the standard 
assumptions of uniformity mentioned above are valid; see the text directly 
before equation (3.8)] and subsequently letting Hip e S*~ be the value of 
~tp ~ S*;, at ~ : 0, i.e., setting 

H'(x) := (~ ' )~ :0  

= (~1[ X, (VOSb)x, (V l sb )  . . . . . .  (VqSb)x] 

= ~lp(x, Sb, Vsb . . . . .  Vqsb) (3.12) 

we can explicitly calculate (8HtlO~)~=o (and hence Lop  t) by contracting 

with 

q 
n[q)(X) " :  0 nlp(x) E S(q),x ( 3 . 1 3 )  

p=0 

q 
(Dqs')x := (9 (VPs')x ~ S(q)~ (3.14) 

p=0 

More precisely, we arrive at 

a.,] : _- . .  | Ws. 
0k ] , :0 p=0 

(3.15) 

where the bilinear function (-, .) is a natural  pa i r ing  of S~q).~ and S(q), x into 
R (Bishop and Goldberg, 1968, p. 77) and where the symbol (9 indicates 
that Hip (9 VPs' is a value of H i ~ S*a on VPs' ~ Sp.~ (i.e., a contraction of 
H i with VPs'). 

In summary, from equations (3.9) and (3.15) we get 

(H(q>, Dqs')  = O, I = 1, 2 . . . . .  m (3.16a) 

Equivalently, we obtain 

q 
H'~ (9 Ws '  = 0, 

p=0 
/ =  1,2 . . . . .  m (3.16b) 
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Each of the results (3.16a) and (3.16b) is the desired system of linear differen- 
tial equations for the determination of s'. The virtues of the description 
based on equations (3.16a) come to the fore when it is convenient to 
reduce linear perturbation theory to the simplest possible form--for  instance, 
when discussing the gauge problem. The description based on equations 
(3.16b) has complementary advantages when it is useful to see the role of 
V-- for  example, when illustrating the economy of the covariant approach 
vis-~t-vis the technique of jet spaces (Vinogradov, 1984). As noted already 
(see Section 2.2), for theories in which one of the fields s a is the metric g 
(s ~ = g) it seems natural to think of V as being the covariant derivative based 
on the background solution Sb (S~ = go). However, this interpretation of V is 
not forced on us, and for a broad class of nonlinear and linearized field 
theories we can also choose V to be the covariant derivative with respect to 
an arbitrary, f ixed,  l inear connect ion on X. Such is indeed the case, because 
the operators Lop / appearing on the left-hand side of equations (3.10) are 
independent of the choice of V. Of course, after the linearized field equations 
have been derived, it proves helpful to regard the mappings [see equations 
(3.16a) and (3.16b)] 

x ~ ~ - .  H ' ( x )  ~ S~'~ (3.17) 

and 

x a x ~ H~)(x) ~ S~)~ (3.18) 

as cross sections of S* and S(*), respectively. Thus, if HI(x, -), I = 1, 2 . . . . .  
m, are real-valued functions on S<q),~, one sees why it is that the vector bundles 
dual to S t, and S<q) play such a large part in linear perturbation theory. These 
vector bundles appear to be important also in the general situation 
described below. 

3.2. Discussion of  the General Case When H ! ( / =  1, 2, . . . ,  m) Are 
Arbitrary Tensor Fields on X 

The analysis so far presented in this section has been based on the 
assumption that, for each L we may take H t to be a mapping of S~q) into R. 
In the general case considered here, the value of  H 1 at u ~ S~q) is of course 
a tensor at x := 7r~q)U. Let ~ be a vector space to which this tensor belongs, 
and denote by V ~ the disjoint union of the vector spaces ~ as x runs through 
X and by "rrl the mapping V ~ --, X which sends each element of ~ to x. Then 
V t is canonically endowed with a vector bundle structure over X. These 
definitions may be combined with each other and with the preceding ones 
to give an interpretation of H I as the mapping of S~q~ into V ~ with the following 



1802 Banach and Piekarski  

property: for each u E S~q), the image of u under "rr(q) equals the image of 
Ht(u)  under -rrj. 

Now, for each x ~ X, let {e x (x)} be a basis of ~ .  Then the sections 
x ~ e~(x) form a frame {e~} of V t over X, so that the mapping HI: S~q) 

V t defined above can be written as 

H z = ~] H~e x (3.19) 
K 

where Htx are real-valued functions o n  S(q) and where K is an integer which 
ranges from 1 to m / : =  dim V~ (as usual, it will be assumed that the dimension 
of Ux does not depend on x E X). Instead of considering equations (2.21), 
we may thus equ iva len t l y  consider the sca la r  equa t ions  

H ~ x ,  s, ~7s . . . . .  ~Tqs) = 0 (3.20) 

with I = 1, 2 . . . . .  m and K = 1, 2 . . . . .  mr. Since it comes to the same 
thing to require that s ~ F satisfies equations (2.21) or equations (3.20), all 
the definitions and all the results of Section 3.1 remain valid, muta t i s  mutandis ,  
when we replace H I by H~: in the statements and proofs. For example, setting 

H~:,: \ " w  ~--~"'=o c S*~ (3.21) 

and 

q 
n / ( q )  : - -  (~  HIKp U S~q), x ( 3 . 2 2 )  

p=0 

we find that s' ~ F is constrained to satisfy the following system of linear 
perturbation equations: 

(HIK(q), Oqs  ' )  = 0 (3.23a) 

I = 1, 2 . . . . .  m,  K = 1, 2 . . . . .  mt  (3.23b) 

Hence, using the definitions (3.14) and (3.22), we get 

q 

/-4:p o W s '  = 0 
p=0 

( I =  1,2 . . . . .  m ; K =  1,2 . . . . .  ml) 

(3.24) 

establishing thereby the analog of equations (3.16b). 
If we bear in mind the definition of Htx by means of equations (3.19), 

we can of course seek by these means to bring everything back to the 
definitions of Section 3.1, but it is essential to verify that in this way we 
obtain notions which are in tr ins ic  to linear perturbation theory, that is, which 
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do not depend on the choice of {e/K}. Now, once we have introduced the 
frame-dependent objects H~p(x) ~ S*x and H~q~(X) ~ S~q),x, the only notions 
which appear to be intrinsic are as follows. First, consider the linear mappings 
Hi(x): Sp,~ ~ V 1 and H[q)(X): S~q),~ ~ ~ given by 

Htp(X) := ~ HtKp(x)eK(x) (3.25) 
K 

and 

H[q)(X) := ~a Htx~q)(x)eX(x) (3.26) 
K 

Then, clearly, after denoting by Htp(X) @ Sp(X) the image of Sp(X) E Sp,~ under 
H~p(x) and by (H~q)(X), S~q)(X)) the image of S~q)(X) ~ S~q)~ under H~q)(X), we have 

Htp(X) @ Se(X ) := ~ [H~n(X ) @ sp(x)]et{(x) (3.27) 
K 

and 

(Ofq)(X), S(q)(X)) := ~ (HIK(q)(X), s(q)(x))ef(x) (3.28)  
K 

Elementary inspection shows that we cannot define the mappings 
Htxp(X): Sp,~ --* R and Htx(q)(X): S(q).~ ~ R intrinsically; but it is perfectly possi- 
ble to use Hip(x) and H(q)(X) in place of them: for it can be verified that, 
although the forms of H~p(x) and H~(q)(X) depend on the choice of {el(x)], 
nevertheless the mappings (3.25) and (3.26) investigated above do not depend 
on the particular {el} chosen. With all these preparatory statements behind 
us, the key point is in fact quite simple. Combining equations (3.24) and 
(3.27) yields 

q 
Hip (3 VPs ' = O, 1 = 1, 2 . . . . .  m (3.29) 

p=0 

this being the analog of equations (3.16b). Next, by applying the definition 
(3.28) to equations (3.23) we also find that 

(H~q), Dqs ') = O, I = 1, 2 . . . . .  m (3.30) 

The analogy to equations (3.16a) is then immediate. In connection with the 
similar results in Section 3.1, we may thus regard equations (3.29) or (3.30) 
as our basic system of linear perturbation equations for the determination of 
s'. Clearly, in general, the objects Hip and H~u ) will depend upon the choice 
of derivative operator V on X. Nevertheless, it follows immediately from our 
constructions above that the expressions appearing on the left-hand side of 
equations (3.29) and (3.30) are independent of this choice. 
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Now, to analyze these matters  still further and to make  even a more  
sugges t ive  link with equat ions (3.16), we give an addi t ional  word  concerning  
Htp(X) and H~q)(X). Let V and W be two vector  spaces.  The set of  l inear  
functions of  V into W forms of  course a vector  space,  which we denote  by 
L(V, W). It then fol lows f rom equations (3.27) and (3.28) that Hip(x) is an 
e lement  of  L(Sp,x, Vlx), and H(q)(X) is an e lement  of  L(S(q),x, Vlx). W h e n  for each 
x E X the vector  space ~ can be ident if ied with R, by virtue of  L(V, R) = 
V*, where  V = Sp~ or V = S(q)~, we reduce immedia te ly  to the si tuation in 
which Hi(x ) E S*a and H~q)(X) ~ S~q)~, so that equat ions (3.29) and (3.30) 
do not  differ  f rom those presented  before  in Sect ion 3.1. Thus, we may  
conclude  that equations (3.16) are indeed special  cases  of  equat ions (3.29) 
and (3.30). 

4. A N A L Y S I S  O F  T H E  G A U G E  P R O B L E M  

4.1. Equivalence Classes of  Perturbations 

Because  o f  the condi t ion  (2.24), there is a gauge  f reedom in covar iant  
f ie ld theories corresponding to the group o f  d i f feomorph isms  o f  " space- t ime"  
X. To be comple te ly  explici t ,  the si tuation is s imply  this. Let  tr: X --* X be a 
d i f feomorphism,  and denote  by  tr * s a the image  of  s A under  ~r. The def ini t ion 
of  tr * s a is convent ional  5 and appears,  e.g., in Choquet -Bruhat  et al. (1989). 
Since cr * s a is a tensor  f ie ld on X o f  the same type as s A, we can think o f  

o r * s : =  G t r * s  a (4.1) 
A=I  

as be ing  the cross sect ion o f  S. It then fol lows immedia t e ly  f rom equat ions  
(2.23) and (2.24) that two different  cross sect ions s(t) and s(2) of  S are 
"phys ica l ly"  equivalent  i f  there is a d i f f eomorph i sm tr: X --* X which  takes 
S(1 ) into s(z) [tr * s(L) = s(2)],  and c lear ly  s(~) satisfies the nonl inear  f ie ld 
equat ions (2.23) if  and only i f  s(2) does.  Thus the solut ions s o f  equat ions  
(2.23) can be unique only up to a d i f feomorphism.  With in  the f r amework  of  
a l inear  approximat ion,  this impl ies  that two per turbat ions  s~) and s~2) satis- 
fy ing equations (3.30) represent  the same per turbat ion o f  Sb i f  (and only if) 
they differ  by  the action o f  an " inf ini tes imal  d i f f eomorph i sm"  (Wald,  1984) 
on the background  solut ion Sb of  equat ions (2.23). A n  inf ini tes imal  diffeo- 

5Suppose that s A is a vector field on X. Then we can define tr * s a by the relation (tr * sA)(x) 
:= (tr-t)'(sa(o'(x))) in which (tr-l) ' stands for the differential of the inverse mapping tr-I: 
X ~ X at tr(x). If s A is a 1-form on X, we are justified in saying that tr * s ~ is the reciprocal 
image (pullback) of s A under a differentiable mapping cr (o" * s ~ := o'*s A, in the standard 
notation). With the help of these concepts, the general definition of ~r * ~a (when s a is an 
arbitrary tensor field on X) follows readily. 
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morphism and its action on s b are most conveniently described in terms 
of a vector field v on X. More precisely, using one-parameter groups of 
diffeomorphisms tr,, ~ ~ ~t, of X [these diffeomorphisms reduce to the 
identity as e -~ 0 (tr0 = 1)] and one-parameter families of exact solutions 
s(e, .) of  equations (2.23), we can construct "new" one-parameter families 
of exact solutions ~(e, .) := o', * s(e, .) obeying the condition 7(0, ") = Sb(') 
= S(0, ") [see equation (3.2) for the definition of Sb] and hence verify that 
the change in a perturbation induced by v is the Lie derivative of s b with 
respect to v: 

~Sb  := @ ~s~ (4.2) 
A=I 

Thus s' and s' + ~vSb represent the same perturbation of Sb, and clearly s' 
satisfies the linear field equations (3.30) if and only if s' + ,~vSb does. 

The set consisting of ~vSb for all 6 vector fields v on X is written Fc; 
this set carries a natural structure of a vector space. For essentially obvious 
reasons, FL is a subspace of the space I" c whose elements  are classical 
solutions o f  equations (3.30). Note that Fc is a proper subspace of F, the 
space of cross sections of S. The situation may therefore be summarized as 
follows. The object of most physical interest is not just one perturbation 
s' E F o  but a whole equivalence class of all perturbations 7' e Fc which 
are equivalent to s': two infinitesimal perturbations s' E f 'c and 7' E Fc 
will be taken to be equivalent if there is a vector field v on X such that 
7' = s' + ~Sb.  The equivalence class of s' c Fc is denoted [s'] and is 
called the gauge-invariant  perturbation associated with s'. In this way, we 
verify that the gauge-invariant perturbations are elements of Fc/FL, the quo- 
tient space of Fc by FL. The essential point in the theory of gauge-invariant 
perturbations is to describe the elements of this quotient space explicitly. These 
issues will be considered in a companion paper (Banach and Piekarski, 1997). 

Another route to discussing the gauge problem is to introduce the equiva- 
lence class [s'] of s' ~ F: two cross sections x ~ s ' (x)  and x ~ U(x) of  S 
(s' E F and 7' ~ F), not necessarily satisfying equations (3.30), but still 
called the infinitesimal perturbations o f  Sb (for reasons explained in Section 
3.1), are equivalent if 5' equals s' + ~Sb  for some vector field v on X of 
class C k (k sufficiently large), (see footnote 6). Then we have the gauge- 
invariant perturbation [s'] associated with s' ~ F and the quotient space 
F/FL which consists of [s'] for all s' ~ F. Inspection shows that Fc/FL is a 
proper  subspace of F/FL. We introduce here the quotient spaces Fc/FL and 

6precisely speaking, v must be of class C k (k sufficiently large); otherwise ~ b  cannot be a 
classical solution of equations (3.30). 
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F/FL, because the theory based on Fc/FL only seems to be somewhat less 
convenient than that based on Fc/FL and F/FL. 

4.2. Definition of Scalar Gauge-Invariant Variables 

The steps presented so far in our analysis do not tell us directly how to 
use the equivalence classes of perturbations in practical calculations or 
whether such calculations are possible at all. As a matter of fact, in order to 
get at these issues, one will require a deeper understanding of the notion of 
a gauge-invariant variable, and, to facilitate this deeper understanding, it 
will be useful to first arrive at the notion of a scalar gauge-invariant variable 
(Section 4.2). This will, among many other things, serve to assemble the 
geometric machinary necessary for a general treatment of gauge-invariant 
variables (Section 4.3). In a companion paper (Banach and Piekarski, 1997) 
we shall indicate the mathematical conditions under which the equivalence 
classes of  perturbations can be described in terms of a finite set of  gauge- 
invariant variables. 

With the foregoing considerations to guide us, we now turn our attention 
to scalar gauge-invariant variables. The first observation is simply this. In 
Section 2.1 we have defined, for each integer r --> 0, the vector bundles Str) 
and S~r) over X. One possible specification of r follows by recognizing that 
the nonlinear field equations (2.21) contain only the covariant derivatives 7 
of s ~ F up to order q. This explains why in Section 3 we identified r with 
q. However, for the purpose of introducing the notion of a gauge-invariant 
variable, no such identifications are natural and all that can be said about r 
is that r is an integer -->0 (r --< q or r > q). 

With the usual convention that Dr(~l~vSb) is given by 

Dr(~,vSb) : =  ~) VP(.~vSb) (4.3) 
p=0 

and that (Dr(~SD)x denotes the value of Dr(~L~sb) at x ~ X, we now define 
for each x c X the subspace W~r),~ of S~r)~ as follows: s~r).~ belongs to Wtr)~ 
if and only if there exists a vector field v on X such that S~r),~ equals 
(Dr(~vSb))x ", hence 

W(r)'x': { S(r)'x E S(r)'x: ~/ S(r)'x = (Dr(~sb))x (4.4) 

Let W~r) be the disjoint union of the vector spaces W~r)a as x runs through X. 
By reason of this statement, W~) is a subbundle of S~). Suppose that (., .) is 

7In the remainder of this paper we assume that F (and hence F c C F) consists of only such 
cross sections of S which are k times continuously differentiable (k sufficiently large). 
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a natural pairing of S~r).~ and S(r), x into R (Bishop and Goldberg, 1968, p. 77). 
Then the subspace F~r).~ of S~r).~ can be defined as the set of linear forms 
f(r),x ~ S~r),x such that @r)~, S~r).~) = 0 for all SCr)~ ~ W~r)~; we call this subspace 
the annihilator of W(r), x in S~.~. It is immediately verified that the disjoint 
union of the vector spaces F~)a as x runs through X, denoted F~r), is a 
subbundle of S~r). 

Let F~r),F be a vector space of cross sections of F~). Note that, in our 
construction below, these cross sections are not necessarily continuous. For 
each (x, f(r)) E~ X X l-'~r),F and each [s'] ~ F/Ft,  put (see footnote 7) 

where 

G(x,f(~), [s'l) := @r)(X), (D~s')x) (4.5) 

(Drs')x := @ (~TPS')x E S(r)~ (4.6) 
p=0 

It is evident that in order to define G(x,f~r~, [s']), we have used one representa- 
tive member of [s'] E F/FL, namely, the infinitesimal perturbation s' ~ F 
characterized by equation (3.5). Clearly, in view of the interpretation of s' 
as an element of F rather than F c, we do not restrict our considerations above 
and below to the case when s' is a solution of equations (3.30). Since always 

(f(r)(X), (Ors ' )x)  = (f(r)(X), (Or(S ' q'- ~,vSb))x) (4.7) 

whenf~r) ~ 1-'~r),y, the value of (f<r), Drs ' )  at x ~ X is completely independent 
of the choice of  3' ~ [s'] and the object G(x, fr), ") indeed defines a real- 
valued function on the quotient space F/FL: 

F/FL ~ [s'] ,-. G(x, fcr), [s']) E R (4.8) 

However, on account of equation (4.6), we easily verify that the dependence 
of G(x, f<r), [S']) on [s'] ~ F/FL is local in the following sense: the cross 
section x ,--, s'(x) is allowed to enter the definition (4.5) of G(x, f~r), [S']) 
only through s'(x) and the "space-time" covariant derivatives of s' up to 
order r evaluated at a point x E X. In other words, the object G(x, f , ) ,  
[S'])  = (f(r)(X), (Drs ' )x)  is such a linear and local algebro-partial differential 
consequence of an arbitrary C r cross section s' of  S that, for each vector field 
v on X of class C r§ the Lie derivative ~Sb  of Sb with respect to v can be 
added to s' without the need of replacing ~ ) (x ) ,  (Drs')x) by the expression 
on the right-hand side of equation (4.7). Proceeding further, for each 

f(r) E F~r), F and each [s'] ~ F/FL it will be natural to introduce the function 
x ~ G(x, fr), Is']), which is a mapping of X into R; we call this mapping 
the scalar gauge-invariant variable o f  order r. From these definitions it is 
plain that if only the vector bundle F(r) does exist, then there are infinitely 
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many cross sections of F~r) and thus there are also infinitely many scalar 
gauge-invariant variables of order r. 

Motivated by the above considerations, we now ask for what class of 
covariant field theories a gauge-invariant analysis of infinitesimal perturba- 
tions may be possible. First, let us observe that since f ( r ) ,  x is in essence the 
orthogonal complement of W~)~ (Greub, 1975, p. 67), the dimensions of F~),x 
and W~)j are related to the dimension of S~r),~ by 

dim (F(~)~0 + dim (W(r).~) = dim (S(,~,0 (4.9) 

As usual, given the definition (4.4) of W(r).r, it will be assumed that the 
background solution sb ~ F of equations (2.21) is such that dim(Wt~)~) and 
dim(F~r)~) [and hence dim(S~r),~)] have values independent of the choice of 
x e X. The next stage in the analysis is to see how the maximal possible 
dimension of W/~), is influenced by changes in the dimension of X. According 
to equation (4.3), for any Sb ~ F the value of Or(~.~b) at  a point x e X 
depends not only on the value of the vector field v at the point x ~ X, but 
also on its values in a neighborhood of x E X--more  precisely, (Dr(Sf,,Sb))~ 
is specified by giving v(x) and (VPv)x up to order r + 1. Combining this fact 
with the definition of W~)a, we then find that 

r+z N(1 - -  N r+2)  
dim (W(~),x) --< ~ N p - 

p=l 1 - N  
(4.10) 

where 

N : = d i m  X ( 4 . 1 1 )  

As regards the dimension of S~r).x, the considerations of Section 2.1 allow us 
to write, for each x ~ X, 

dim(S(r),~) = ~ ~ N Ra+rA+p 
p=0 A=I 

1 - -  N r+ l  
-- f-_.~--~ ~ N RA+ra 

A=I 
(4.12) 

Hence a sufficient condition that dim(F~r)a) > 0 can be stated as follows: 

fl - /V~+21 < I1 - N~+lr ~ N Ra+rA-1 
A=I 

(4.13) 

Now, since n is a total number of tensor fields s A in s [see equation (2.1)], 
the above inequality will be satisfied if, e.g., 
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N i l  - N r + 2 [  

n > I1 - Nr+ll (4.14) 

Situations are known in which linearized theory gives an incorrect description 
of the collection of solutions of the field equations near a fixed background 
solution (Fischer et  al., 1980). However, if this approach is sufficient to 
capture the dominant effects of the nonlinear theory, as is usually the case 
(D'Eath, 1976; Banach and Makaruk, 1995), the inequality (4.14) has the 
unexpected corollary that a gauge-invariant treatment of infinitesimal pertur- 
bations will "almost always" be possible. This observation rigorously results 
from our analysis because, contrary to some of the opinions presented in the 
literature in recent years, the existence of FCr) and hence of x ~ G(x,  f r ) ,  
[s']) depends only slightly on the properties of the background. Thus, in all 
probability, nondegenerate linear perturbation theory for which sufficiently 
many gauge-invariant variables do exist that the equivalence classes of pertur- 
bations are completely determined by them (at least in principle) is a theory 
with sufficiently many tensor fields s a on X (Banach and Piekarski, 1997). 

As another consequence of our geometric approach, we are also able to 
arrive at the following result (Banach and Piekarski, 1996a): First consider 
metric theories of gravity (e.g., Einstein's gravity theory) and subsequently 
apply these theories to the construction of an almost-Robertson-Walker uni- 
verse containing a perfect fluid (Ellis and Bruni, 1989). If so, the background 
metric gb and the background fluid four-velocity Ub Can be used to natural ly  
make S~).~ into an inner product space, with the scalar product which we 
denote by (-, .). Based on this scalar product, we immediately show that 
there is a linear isomorphism r :  S(r) ,  x ~ S~r), x such that if a~r), and b(r),x a r e  

arbitrary elements of Scr)z, then (T(a(r),x) , b(r),x) equals (a(r),x, b(r),x). Under 
these circumstances, it may be convenient not to distinguish between the 
annihilator F~r).~ and its image "r-l(F<r).~) in S~r)~, but to regard them as the 
s a m e  vector space. This is called identification, and while it is not possible 
if there are no "prior geometric" elements such as gb and ub, in many cases 
of physical interest it leads to a great deal of economy of formulas and an 
alternative definition of gauge-invariant variables (Banach and Piekarski, 
1996a, Section 4.1). Of course, we shall only identify spaces whenever we can 
introduce a canonica l  scalar product in Sr and the most general treatment of 
gauge-invariant variables is completely independent of the existence of this 
additional structure on X. 

4.3. Definition of Tensorial Gauge-Invariant Variables 

In Section 4.2 we defined the gauge-invariant objects G in such a way 
that for each choice of (fr), [s']) ~ F~,F X F/Fc,  the mapping x ~ G(x,  f r ) ,  
[s']) is a cross section of the vector bundle 
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�9 = u Rx ( 4 . 1 5 )  
xEX 

where all the fibers Rx can be identified with R, the set of real numbers. 
However, instead of considering the vector bundle ~t, we may more generally 
consider the vector bundle 

T : =  t3 Tx (4.16) 
x ~ X  

whose cross sections are tensor fields on X (Dieudonn& 1972; Choquet- 
Bruhat et al., 1989). Consequently, the primary task now is to generalize to 
the context of T the notion of a scalar gauge-invariant variable of order r. 

To this end, let S~(~), := L(S~r).~, TO be the set of linear functions of S(r), x 
into T~, and denote by S~) the disjoint union of the S(r~).~ as x runs through X: 

S(r  ~) " =  [,.,J S~(r),x (4.17) 
xEX 

From these definitions it follows immediately that since S~r)j forms for each 
x e X a vector space, we may regard S(r ~) as being the vector bundle over X. 
By analogy with what was said earlier in connection with equations (3.30), 
given s(r~.~ E S~r)~, an element * a~r),(S~r)~) E T~ of the range set of 

�9 S~)~ is called a value of * (or the image of S(r)a under a(r), x E a(r), x o n  S(r), x 

(a~).~, s~)a). Of course, if {ex(x)} is a basis of T~, and a(~)~,) and is denoted * 
if we put 

a(r).~ = ~ a*lrm).~ eK(X) (4.18) 
K 

where a*/~ ~ are linear functions on S~)a with values in R, then we can 
explicitly characterize the action a~).~* on s~,).~ by 

(a(r).~, s(m~) = ~ (a*lrm).~, s(~)~) eK(x) (4.19) 
K 

Now suppose that the subspace W(,)a of S(r).~ has exactly the same meaning 
as in Section 4.2, and describe the annihilator F~r)~ of W~), in S~r)~ by saying 
that Y~r)~ belongs to F(r)~ C S~).~ if and only if ~r S(r),x) -~- 0 for all s~)~ 
W(m,. It will be convenient to set 

F(r) := 13 F~r)a (4.20) 
x ~ X  

Obviously, this definition gives an interpretation of F(n as a (vector) subbundle 
of S(r*~. Likewise, for each integer r ~ 0, the (vector) subbundle W~r) of S(r) 
can be defined: 

W~r) := t.3 W(r~ (4.21) 
x ~ X  

Once we have introduced F(~) via equation (4.20), the remainder of the 
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specification of the gauge-invariant construction is straightforward. First, it 
is not difficult to see that all the considerations and all the results in Section 
4.2 can be transposed to the context of T simply by replacing (~t, S~r*}, W~r}, 
F(r)) throughout by (T, S3Cr ~, W~r), F{r}). To illustrate this, let us remark the 
following: if * F~r). F is a vector space of cross sections of F~r), then for each 
(x,~r)) ~ X X  * F(r), F and each [s'] e F/FL it will be possible to define the 
gauge-invariant object G(x,~),  [s']) e Tx by 

G(x, f(r), [ S t ] )  " = (f(r)(X), (Drs')x) ( 4 . 2 2 )  

Again we verify that since 

(fr)(X), (D~s')x) = (fr)(X), (Dr(s ' + ~sb))x)  (4.23) 

the value of (f{r}, D ~ ' )  at x ~ X is completely independent of the choice of 
3' ~ [s'] and thus the mapping [s'] ~ G(x, f~), Is'I) may be regarded as a 
linear function of F/FL into Tx. The analogy to equation (4.8) is immediate, 
and further discussion proceeds in the same way as in Section 4.2. More 
precisely, the next stage in the construction is to observe that, after freely 
choosingf~r) E I'~),r and [s'] ~ F/FL, we obtain the mapping x ~ G(x, fr}, 
[s']), which is a cross section of T. Here and henceforth, this cross section 
will be called the gauge-invariant variable o f  order r. As we shall demonstrate 
in our analysis in a companion paper (Banach and Piekarski, 1997), such a 
generalization of the notion of a scalar gauge-invariant variable is the most 
convenient one for working less abstractly with the elements Is'] of a quotient 
space F/Fb i.e., for explicitly specifying the conditions under which the 
equivalence classes of perturbations are uniquely determined from a knowl- 
edge of only finitely many gauge-invariant variables. Note also that although 
some aspects of the definitions of G(x, f~r), [S']) depend upon the choice of 
derivative operator V on X, nevertheless the notion of a gauge-invariant 
variable of order r and the property (4.23) do not by virtue of our remarks 
at the beginning of Section 2.2. 

The above discussion leads to the following overall picture: any cross 
section of F{~), not necessarily continuous, can in a sense be identified with 
the gauge-invariant variable of order r, and if only the vector bundle F~) 
does exist, as is quite often the case, then there are infinitely many cross 
sections of F{~) and thus there are also infinitely many gauge-invariant vari- 
ables of order r. With regard to the choice of an integer r - 0 and a tensor 
bundle T in the definition of F{~), this choice depends mostly on us, and 
different possible choices of r and T give rise to different gauge-invariant 
variables. 

What is the relationship between the notion of a tensorial gauge-invariant 
variable defined above and the notion of a scalar gauge-invariant variable 
arising from the construction of Section 4.2? The tensor field G(., fr}, [S']) 
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on X determined by equation (4.22) has of course an expression in terms of 
scalar gauge-invariant variables. To see this, we first introduce the frame 
{er} of T over X and subsequently decompose f~r) ~ F~r) as 

f(~) = ~ f~)er  (4.24) 
K 

where the objects f~r) are cross sections of the vector bundle F(r) defined in 
Section 4.2. Naturally, substituting this decomposition for f~) into equation 
(4.22) yields the result 

G(x, f(r), [S']) = s GK(x, f(~, [s'])ex(x) (4.25) 
K 

in which 

GK(x,f(r), [ s ' ] ) :=  (ff(r)(X), (Drs')x) (4.26) 

Since the cross sections x ~ GK(x, f(r), [S']) of ~ [see equation (4.15)] serve 
to define scalar gauge-invariant variables of order r, it is obvious from 
the decomposition (4.25) for G(x, fr), [S']) that the original gauge-invariant 
variable, namely the mapping x ,.-, G(x, f~), [s']), can be expressed in terms 
of these cross sections. Of course, the replacement of G by {G x} is not a 
fully covariant activity, as it depends on the particular frame {eK} chosen. 
Nevertheless, such an approach helps us considerably simplify the discussion 
of a gauge problem, provided we drop the requirement that our analysis be 
fully covariant. Moreover, in many cases of physical interest (Banach and 
Piekarski, 1996a-d) the properties of a background solution Sb to equations 
(2.23) dictate the use of preferred frames {eK}. 

5. THE G E O M E T R I C  SIGNIFICANCE OF H[q) 

As noted already in Section 2.2, the relation (2.24) for H l, I = 1,2, 
. . . .  m, establishes a natural prescription for constructing diffeomorphism- 
invariant, covariant field theories. Because of this relation, in the case of 
interest to us--namely the partial differential equations governing linearized 
perturbations--the essential two properties of the expression (H[q), Oqs ') 
appearing on the left-hand side of equation (3.30) are that it (i) is linear in 
s' ~ F (see footnote 7) and (ii) satisfies for each C q+l vector field v on X a 
condition of the form 

<H{q), Dqs ' )  = <H{q), Dq(s  ' '1- ~.(t~,Sb) ) (5.1) 

Note that, in interpreting this condition, there is no need to assume that 
s' E F is a solution of the linearized field equations. We then may view the 
mapping x ~ (H{u)(x), (Dqs')x), which is a cross section of the vector bundle 
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V I (see Section 3.2 for the definition of Vt), as a gauge-invariant variable of 
order q. 

The basic geometrical content of this statement should be more or less 
obvious. After identifying T with V t in the general construction of Section 
4.3, we can think of the mapping x ~ H~ql(X) as being the cross section of 
F~q). Since this interpretation of H~q) is rather important and seems necessary 
if one wishes to find a manifestly gauge-invariant form of equations (3.30), it 
will be developed further in a companion paper (Banach and Piekarski, 1997). 

6. DISCUSSION AND CONCLUDING R E M A R K S  

The main goal of this paper was to provide a coherent, self-contained 
introduction to the geometric formulation of linear perturbation theory for 
covariant field equations. Because of the condition (2.24), this formulation 
differs from the "conventional" one (Vinogradov et al., 1986) in that the 
solutions of the linearized field equations can be unique only up to an 
"infinitesimal diffeomorphism" of the "space-time" manifold X, i.e., two 
perturbations s' and 5' satisfying equations (3.30) characterize the same 
perturbation of the "background" solution Sb if (and only if) there exists a 
vector field v on X such that 5' - s' is the Lie derivative ~ S b  of Sb with 
respect to v. Consequently, to have genuine physical significance, gauge- 
invariant variables should be constructed from the objects canonically present 
in the problem, here Sb and s', without reliance on artificially introduced 
concepts, such as the notion of a point identification map between two 
different manifolds X and X of independent variables. 

In Section 4, we have presented the construction of gauge-invariant 
variables without ever specifying the detailed form of covariant field equations 
and without ever analyzing the symmetry properties of the background, if 
any. This contrasts sharply with most presentations of linear perturbation 
theory, wherein one decides at the outset to define H t and ends up constructing 
gauge-invariant variables for particular choices of Sb. Thus, in our discussion 
of the gauge problem, it is important that we distinguish clearly between the 
essential input in the theory (namely, the general definition of the annihilator 
F~,~,~ of W~r)a in S'~mz) and inessential input (namely, the choice of a concrete 
form of H I and Sb). Some of the results obtained in this paper are based on 
earlier published works devoted to applications of the linear approximation 
method to the analysis of Einstein's gravity theory for the description of an 
almost-Robertson-Walker universe (Banach and Piekarski, 1994a-c, 1996a- 
d). These results were considerably generalized here and presented in a form 
completely independent of how the objects H 1 and Sb are chosen, with more 
discussion on the motivation and explanation for the geometrical aspects of 
the theory than space would allow in "normal technical" investigations, and 
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they were given in one place where there would then be a more unified and 
coherent explication of the subject. 

Another interesting question has already been alluded to in the Introduc- 
tion and in Section 4.3. Could a finite set of gauge-invariant variables be 
applied successfully to a unique characterization of the equivalence classes 
of perturbations? Or, more precisely, will a tractable analytical expression 
for [s'] ~ F/FL exist? That these sorts of problems actually do arise has in fact 
been demonstrated explicitly in our previous papers (Banach and Piekarski, 
1996a-d). As an illustration, beginning from Einstein's gravity theory, it was 
demonstrated there that, in the case of an almost-Robertson-Walker universe 
(Ellis and Bruni, 1989) dominated by a collisionless gas or a general perfect 
fluid, the complete characterization of cosmological perturbations can be 
obtained if one defines in a suitable way 17 or 18 "geometrically" independent, 
not identically vanishing gauge-invariant variables. One can think of these 
basic variables, denoted collectively by to, as having at least three aspects. 
First, to provides a mathematically simplest representation of the gauge- 
invariant perturbation [s']. In fact, Is'] is uniquely determined from to and 
vice versa. Second, any gauge-invariant quantity is obtainable directly from 
the basic variables to through purely local (i.e., algebraic and differential) 
operations. Third, a complete set of propagation equations can be derived 
that involves only to. These equations are physically more transparent than 
the usual ones, because spurious "gauge mode" solutions are automatically 
excluded. 

Given the viewpoint adopted above, in a companion paper (Banach and 
Piekarski, 1997) our attention will, in large part, focus upon such conceptual 
matters as how one might generalize the definition of to so as to apply it to 
arbitrary diffeomorphism-invariant, covariant field theories. Thus, for exam- 
ple, one would like to specify the conditions under which a finite set of 
gauge-invariant variables, still denoted by to, suffices to obtain an explicit 
description of the equivalence classes of perturbations. Similarly, one might 
like to show that any gauge-invariant quantity can be expressed locally in 
terms of to. These sorts of problems will be discussed in a companion paper 
(Banach and Piekarski, 1997). A new nontrivial example of to [as compared 
with those already presented (Banach and Piekarski, 1996a-d)] will also be 
pointed out there. 

Despite these results and perspectives, a number of unresolved issues 
remain. Specifically, it seems very important to determine how, at least in 
principle, one would go beyond the "simple" linear approximation; and, as 
a corollary to this, one would clearly like to verify whether a covariant and 
gauge-invariant treatment of nonlinear perturbations can really be justified 
on a geometrical level. This problem arises in particular in examining the 
structure of perturbation theory for Einstein's field equations and their modifi- 
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cations such as the Brans-Dicke and Hellings-Nordtvedt equations (Brans 
and Dicke, 1961; Hellings and Nordtvedt, 1973). 

APPENDIX. SOME AUXILIARY TECHNICAL DEFINITIONS 
AND CONCEPTS 

In Section 3, we were naturally led to define the "derivative of H I and 
H~r with respect to wP E Sp,  x a t  w P  = w p ' '  t o  be a linear form on Sp,x, i.e., 
an element of the vector space S*~ dual to Sp~. This derivative, denoted in 
Section 3.1 by dH1/dw ~ and in Section 3.2 by dHtr /dw p, is a special case of 
the more general concept, which can be described as follows. 

Let W be a finite-dimensional vector space and suppose that Y: W ~ R 
is the mapping of class C ~ which associates with w ~ W the real number 
Y(w). If { e r}  is a basis of W, then every vector w e W is uniquely expressible 
in the form 

w = ~ wxe r (A. 1) 
K 

where the objects w r  are components of w with respect to {er}. Next, let 
{er} be a basis of W* dual to the basis {e r}  of W. We can then define the 
der iva t ive  o f  Y wi th  respec t  to w, denoted for brevity by d Y / d w ,  to be a 
linear form on W, i.e., an element of the vector space W* dual to W. More 
precisely, after introducing the basis {e r} of W, it will be possible to regard 
Y(w) as a differentiable function of the components wx of w and thus charac- 
terize the aforementioned derivative by 

dY ~ OY (A.2) 
d-w :=  e r  Ow----rK 

Elementary inspection shows that the notion at which we arrive in this way 
does not depend on the particular basis {e r} of W chosen. 

As special cases which illustrate this general construction, identify the 
vector space W with Spa and the mapping Y: W --* R with either 

�9 w P+~ . ,  wq): Sp~ ~ R (A.3a) Ht(x,  w ~ . ,  ~ - ~ , .  . . . .  

o r  

. .  w p+I . ,  wq): Spa--* R (A.3b) H ~ x ,  w ~ . ,  w p- l ,  ~ . . . .  

Then we obtain the objects d H q d w  ~ and dHtK/dW p of Section 3 [see especially 
equations (3.11) and (3.21)]. 
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